最后一次学习任务打卡,作为深度学习小白,对这次入门CV赛事进行一次探索性的总结吧。下面来细数我在探索中遇到的坑,并一个线上得分为0.7687的改进版baseline。 安装GPU版本的Pytorch最重要的一步就是找对CUDA的驱动版本,之前装的版本和自己的电脑一直都不匹配,还在那折腾了好久,后来选对版本一次就装成功了。 清华源还提供了 Anaconda 仓库与第三方源(conda-forge、msys2、pytorch等)的镜像。因此需要pytorch, 还需要添加pytorch的镜像: 上面的pytorch安装命令中,应该把-c pytorch去掉,否则还是用默认的源进行安装。 安装好之后测试下GPU是否可用,这样环境就算配置完成了。 这里记录下跑baseline时遇到的问题,最后都通过学习群的答疑文档解决了。 用GPU训练时 目前尝试了一些简单的改进方法: 训练集的数据增强 测试集的数据增强 学习率衰减 每次调整一项参数 学会看训练日志 后续待改进的方法 我的完整版代码,基于baseline进行了一点改进,线上得分为0.7687: 训练日志: 安晟–天池直播:模型训练与验证+模型集成 Datawhale是一个专注于数据科学与AI领域的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。Datawhale以“for the learner,和学习者一起成长”为愿景,鼓励真实地展现自我、开放包容、互信互助、敢于试错和勇于担当。同时Datawhale 用开源的理念去探索开源内容、开源学习和开源方案,赋能人才培养,助力人才成长,建立起人与人,人与知识,人与企业和人与未来的联结。一、GPU环境配置
查看电脑显卡对应的CUDA驱动版本
1、首先进入控制面板,查看显卡类型
我的台式机是有NVIDIA显卡的,可以安装GPU,但我Matebook X笔记本的显卡是因特尔的,就没法安装了。
2、进入NVIDIA显卡控制面板
3、进步系统信息,在组件里查看NVCUDA.DLL的信息
这里可以看到,我的CUDA版本是10.1的。
4、Pytorch官网安装命令,这里就选择对应的CUDA 10.1
用系统默认的源进行在线安装会比较慢,可以选用清华源安装,也可以下载离线安装包进行安装。
添加清华源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda install pytorch torchvision cudatoolkit=10.1
二、跑通Baseline
三、调参技巧
其实baseline里面已经给出了数据增强的方法,但具体参数还可以自己调节一下,图片中字符的位置关系确实很重要,可以考虑多做些基于位置的数据增强。也可以增加其他的数据增强方法,比如自定义transforms方法来增加高斯噪声等等,这个准备下一步尝试。
测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。实验中,如果对测试集数据使用旋转、颜色变换等反而会降低线上分数。
初始学习率的设置也很重要,我是设置为0.001,如果设置为0.01你会发现前几轮的验证集准确率非常低,大概在0.02左右,后续提高也不明显,这是因为步长过大了。尝试使用学习率衰减策略,前12轮使用0.001的学习率,后面使用0.0001的学习率,对线上提分有帮助。
这一点对于新手很重要,不至于调参调到晕头转向,最后模型改进了也不确定是哪个参数的功劳。还有,与此同时固定随机数torch.manual_seed(0),方便进行单因素调参,排除不确定性因素的影响。
日志里面有四项输出,例如:Epoch: 18, Train loss: 0.397826306382815 Val loss: 2.669229788303375,Val Acc 0.5954
不能一味追求训练集的loss降低,因为会过拟合,主要还是看验证集的loss情况,训练轮数也不用太多。
对于新手而言,还有非常大的进步空间……
import os, sys, glob, shutil, json os.environ["CUDA_VISIBLE_DEVICES"] = '0' import cv2 from PIL import Image import numpy as np from tqdm import tqdm, tqdm_notebook import torch torch.manual_seed(0) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True import torchvision.models as models import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data.dataset import Dataset class SVHNDataset(Dataset): def __init__(self, img_path, img_label, transform=None): self.img_path = img_path self.img_label = img_label if transform is not None: self.transform = transform else: self.transform = None def __getitem__(self, index): img = Image.open(self.img_path[index]).convert('RGB') if self.transform is not None: img = self.transform(img) lbl = np.array(self.img_label[index], dtype=np.int) lbl = list(lbl) + (5 - len(lbl)) * [10] return img, torch.from_numpy(np.array(lbl[:5])) def __len__(self): return len(self.img_path) train_path = glob.glob('input/train/*.png') train_path.sort() train_json = json.load(open('input/train.json')) train_label = [train_json[x]['label'] for x in train_json] print(len(train_path), len(train_label)) train_loader = torch.utils.data.DataLoader( SVHNDataset(train_path, train_label, transforms.Compose([ transforms.Resize((64, 128)), transforms.RandomCrop((55, 115)), transforms.ColorJitter(0.3, 0.3, 0.2), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])), batch_size=40, shuffle=True, # num_workers=0, ) val_path = glob.glob('input/val/*.png') val_path.sort() val_json = json.load(open('input/val.json')) val_label = [val_json[x]['label'] for x in val_json] print(len(val_path), len(val_label)) val_loader = torch.utils.data.DataLoader( SVHNDataset(val_path, val_label, transforms.Compose([ transforms.Resize((64, 128)), transforms.RandomCrop((55, 115)), transforms.ColorJitter(0.3, 0.3, 0.2), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])), batch_size=40, shuffle=False, #num_workers=0, ) class SVHN_Model1(nn.Module): def __init__(self): super(SVHN_Model1, self).__init__() model_conv = models.resnet18(pretrained=True) model_conv.avgpool = nn.AdaptiveAvgPool2d(1) model_conv = nn.Sequential(*list(model_conv.children())[:-1]) self.cnn = model_conv self.fc1 = nn.Linear(512, 11) self.fc2 = nn.Linear(512, 11) self.fc3 = nn.Linear(512, 11) self.fc4 = nn.Linear(512, 11) self.fc5 = nn.Linear(512, 11) def forward(self, img): feat = self.cnn(img) # print(feat.shape) feat = feat.view(feat.shape[0], -1) c1 = self.fc1(feat) c2 = self.fc2(feat) c3 = self.fc3(feat) c4 = self.fc4(feat) c5 = self.fc5(feat) return c1, c2, c3, c4, c5 def train(train_loader, model, criterion, optimizer, epoch): # 切换模型为训练模式 model.train() train_loss = [] for i, (input, target) in enumerate(train_loader): if use_cuda: input = input.cuda() target = target.cuda() c0, c1, c2, c3, c4 = model(input) target = target.long() loss = criterion(c0, target[:, 0]) + criterion(c1, target[:, 1]) + criterion(c2, target[:, 2]) + criterion(c3, target[:, 3]) + criterion(c4, target[:, 4]) # loss /= 6 optimizer.zero_grad() loss.backward() optimizer.step() train_loss.append(loss.item()) return np.mean(train_loss) def validate(val_loader, model, criterion): # 切换模型为预测模型 model.eval() val_loss = [] # 不记录模型梯度信息 with torch.no_grad(): for i, (input, target) in enumerate(val_loader): if use_cuda: input = input.cuda() target = target.cuda() c0, c1, c2, c3, c4 = model(input) target = target.long() loss = criterion(c0, target[:, 0]) + criterion(c1, target[:, 1]) + criterion(c2, target[:, 2]) + criterion(c3, target[:, 3]) + criterion(c4, target[:, 4]) # loss /= 6 val_loss.append(loss.item()) return np.mean(val_loss) def predict(test_loader, model, tta=10): model.eval() test_pred_tta = None # TTA 次数 for _ in range(tta): test_pred = [] with torch.no_grad(): for i, (input, target) in enumerate(test_loader): if use_cuda: input = input.cuda() c0, c1, c2, c3, c4 = model(input) if use_cuda: output = np.concatenate([ c0.data.cpu().numpy(), c1.data.cpu().numpy(), c2.data.cpu().numpy(), c3.data.cpu().numpy(), c4.data.cpu().numpy()], axis=1) else: output = np.concatenate([ c0.data.numpy(), c1.data.numpy(), c2.data.numpy(), c3.data.numpy(), c4.data.numpy()], axis=1) test_pred.append(output) test_pred = np.vstack(test_pred) if test_pred_tta is None: test_pred_tta = test_pred else: test_pred_tta += test_pred return test_pred_tta model = SVHN_Model1() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), 0.001) best_loss = 1000.0 use_cuda = True if use_cuda: model = model.cuda() for epoch in range(20): if epoch > 12: optimizer = torch.optim.Adam(model.parameters(), 0.0001) train_loss = train(train_loader, model, criterion, optimizer, epoch) val_loss = validate(val_loader, model, criterion) val_label = [''.join(map(str, x)) for x in val_loader.dataset.img_label] val_predict_label = predict(val_loader, model, 1) val_predict_label = np.vstack([ val_predict_label[:, :11].argmax(1), val_predict_label[:, 11:22].argmax(1), val_predict_label[:, 22:33].argmax(1), val_predict_label[:, 33:44].argmax(1), val_predict_label[:, 44:55].argmax(1), ]).T val_label_pred = [] for x in val_predict_label: val_label_pred.append(''.join(map(str, x[x != 10]))) val_char_acc = np.mean(np.array(val_label_pred) == np.array(val_label)) print('Epoch: {0}, Train loss: {1} t Val loss: {2}'.format(epoch, train_loss, val_loss)) print('Val Acc', val_char_acc) # 记录下验证集精度 if val_loss < best_loss: best_loss = val_loss # print('Find better model in Epoch {0}, saving model.'.format(epoch)) torch.save(model.state_dict(), './model.pt') test_path = glob.glob('input/test_a/*.png') test_path.sort() #test_json = json.load(open('input/test_a.json')) test_label = [[1]] * len(test_path) print(len(test_path), len(test_label)) test_loader = torch.utils.data.DataLoader( SVHNDataset(test_path, test_label, transforms.Compose([ transforms.Resize((64, 128)), #transforms.RandomCrop((55, 115)), #transforms.ColorJitter(0.3, 0.3, 0.2), #transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])), batch_size=40, shuffle=False, num_workers=0, ) # 加载保存的最优模型 model.load_state_dict(torch.load('model.pt')) test_predict_label = predict(test_loader, model, 1) print(test_predict_label.shape) test_label = [''.join(map(str, x)) for x in test_loader.dataset.img_label] test_predict_label = np.vstack([ test_predict_label[:, :11].argmax(1), test_predict_label[:, 11:22].argmax(1), test_predict_label[:, 22:33].argmax(1), test_predict_label[:, 33:44].argmax(1), test_predict_label[:, 44:55].argmax(1), ]).T test_label_pred = [] for x in test_predict_label: test_label_pred.append(''.join(map(str, x[x != 10]))) import pandas as pd df_submit = pd.read_csv('input/sample_submit_A.csv') df_submit['file_code'] = test_label_pred df_submit.to_csv('submit.csv', index=None)
30000 30000 10000 10000 Epoch: 0, Train loss: 3.6878881301879884 Val loss: 3.8314202270507813 Val Acc 0.3009 Epoch: 1, Train loss: 2.353892293771108 Val loss: 3.3798744926452637 Val Acc 0.3678 Epoch: 2, Train loss: 1.9556938782533009 Val loss: 2.81031014251709 Val Acc 0.4612 Epoch: 3, Train loss: 1.755560370206833 Val loss: 2.6982784156799315 Val Acc 0.4744 Epoch: 4, Train loss: 1.6203363784948985 Val loss: 2.6456471338272096 Val Acc 0.5076 Epoch: 5, Train loss: 1.4930931321779888 Val loss: 2.491475617170334 Val Acc 0.5248 Epoch: 6, Train loss: 1.4172131468454996 Val loss: 2.500324214935303 Val Acc 0.5324 Epoch: 7, Train loss: 1.3275229590336481 Val loss: 2.4962129735946657 Val Acc 0.5321 Epoch: 8, Train loss: 1.269516961534818 Val loss: 2.504521679401398 Val Acc 0.5199 Epoch: 9, Train loss: 1.219906511068344 Val loss: 2.5031806914806367 Val Acc 0.5397 Epoch: 10, Train loss: 1.175540789326032 Val loss: 2.3800894572734834 Val Acc 0.5593 Epoch: 11, Train loss: 1.1057798286676408 Val loss: 2.3298161714076997 Val Acc 0.5592 Epoch: 12, Train loss: 1.0604492790699005 Val loss: 2.4316101694107055 Val Acc 0.5537 Epoch: 13, Train loss: 0.8014968274434408 Val loss: 2.161671969652176 Val Acc 0.6084 Epoch: 14, Train loss: 0.7160509318908056 Val loss: 2.1714828568696976 Val Acc 0.6105 Epoch: 15, Train loss: 0.6728036096990109 Val loss: 2.192563164949417 Val Acc 0.6107 Epoch: 16, Train loss: 0.6450036255816619 Val loss: 2.1687607110738756 Val Acc 0.6152 Epoch: 17, Train loss: 0.613456147958835 Val loss: 2.168002246141434 Val Acc 0.6192 Epoch: 18, Train loss: 0.5890960101981958 Val loss: 2.2155155210494994 Val Acc 0.6148 Epoch: 19, Train loss: 0.5747307665348053 Val loss: 2.2544857943058014 Val Acc 0.6158 40000 40000 (40000, 55)
参考
计算机视觉实践(街景字符编码识别)
datawhalechina
动手学深度学习
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算