新手可以参考这篇 8、Getting Started With Titanic,教你如何操作、提交等 自己简要再记录一下: 完成课程
各个 tab 下可以查看数据Data、代码编写Notebooks、讨论、排名、比赛规则、队伍
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # 读取数据 test_data = pd.read_csv("../input/titanic/test.csv") test_data.head() train_data = pd.read_csv("../input/titanic/train.csv") train_data.head() # 简要的数据查看,分析男女生存状况 women = train_data.loc[train_data.Sex == 'female']["Survived"] rate_women = sum(women)/len(women) print("% of women who survived:", rate_women) men = train_data.loc[train_data.Sex == 'male']["Survived"] rate_men = sum(men)/len(men) print("% of men who survived:", rate_men) # 随机森林模型,选取4个特征 from sklearn.ensemble import RandomForestClassifier y = train_data["Survived"] features = ["Pclass", "Sex", "SibSp", "Parch"] X = pd.get_dummies(train_data[features])# get_dummies编码处理 X_test = pd.get_dummies(test_data[features]) # 设置模型参数 model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1) model.fit(X, y)#训练 predictions = model.predict(X_test)#预测 # 输出预测文件 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) # 写入csv文件 output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!")
往下找到 output files
Intro to Machine Learning
,发了一张证书,哈哈,加油!
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算