@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府 什么是递归? 简单地理解就是函数调用自身的过程就称之为递归。 什么时候用到递归? 如果一个问题可以表示为更小规模的迭代运算,就可以使用递归算法。 在python中可以使用list嵌套表示二维数组。假设一个6*6的迷宫,问题时从该数组坐标[3][3]出发,判断能不能成功的走出迷宫。 针对这个迷宫问题,我们可以使用递归的思想很好的解决。对于数组中的一个点,该点的四个方向可以通过横纵坐标的加减轻松的表示,每当移动的一个可移动的点时候,整个问题又变为和初始状态一样的问题,继续搜索四个方向找可以移动的点,知道移动到数组的边缘。 所以我们可以这样编码: 递归是个好东西呀! 非常感谢你的阅读
本文实例讲述了Python基于递归算法实现的走迷宫问题。给大家供大家参考,具体如下:
迷宫问题:一个由0或1构成的二维数组中,假设1是可以移动到的点,0是不能移动到的点,如何从数组中间一个值为1的点出发,每一只能朝上下左右四个方向移动一个单位,当移动到二维数组的边缘,即可得到问题的解,类似的问题都可以称为迷宫问题。maze=[[1,0,0,1,0,1], [1,1,1,0,1,0], [0,0,1,0,1,0], [0,1,1,1,0,0], [0,0,0,1,0,0], [1,0,0,0,0,0]]
# 判断坐标的有效性,如果超出数组边界或是不满足值为1的条件,说明该点无效返回False,否则返回True。 def valid(maze,x,y): if (x>=0 and x<len(maze) and y>=0 and y<len(maze[0]) and maze[x][y]==1): return True else: return False # 移步函数实现 def walk(maze,x,y): # 如果位置是迷宫的出口,说明成功走出迷宫 if(x==0 and y==0): print("successful!") return True # 递归主体实现 if valid(maze,x,y): # print(x,y) maze[x][y]=2 # 做标记,防止折回 # 针对四个方向依次试探,如果失败,撤销一步 if not walk(maze,x-1,y): maze[x][y]=1 elif not walk(maze,x,y-1): maze[x][y]=1 elif not walk(maze,x+1,y): maze[x][y]=1 elif not walk(maze,x,y+1): maze[x][y]=1 else: return False # 无路可走说明,没有解 return True walk(maze,3,3)
大学的时候选择了自学python,工作了发现吃了计算机基础不好的亏,学历不行这是
没办法的事,只能后天弥补,于是在编码之外开启了自己的逆袭之路,不断的学习python核心知识,深入的研习计算机基础知识,整理好了,如果你也不甘平庸,那就与我一起在编码之外,不断成长吧!
其实这里不仅有技术,更有那些技术之外的东西,比如,如何做一个精致的程序员,而不是“屌丝”,程序员本身就是高贵的一种存在啊,难道不是吗?[点击加入]想做你自己想成为高尚人,加油
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算