题目如下👇 题目数据资源如下👇 答案如下👇
我又带来一堆Spark题了,这次是SparkSQL的!!!
废话不多说,上题!!!
1、分别给出四张表的数据分别是: student_info.txt 字段是:学号,姓名,性别,所属班级编号,入学日期 department_info.txt 字段是:院系编号,院系名称 class_info.txt 字段是:班级编号,班级名称,入学日期,所属院系中文名 student_scores.txt 字段是:学号,姓名,性别,所属班级编号,入学成绩 请分别使用三种方式 第1种:指定列名添加Schema 第2种:通过StructType指定Schema 第3种:编写样例类,利用反射机制推断Schema 查询四个文件的数据 2、在hive中创建表 用户行为表:user_visit_action 对应的数据文件是user_visit_action.txt,分割符为tab键 字段依次是:时间 用户id 会话id 页面id 时间戳 搜索关键字 点击品类id 点击产品id 下单品类id 下单产品id 支付品类ids 支付产品ids 城市id 城市表:city_info 对应的数据文件是city_info.txt,分割符为tab键 字段依次是:城市id 城市名字 地区 产品表:product_info 对应的数据文件是product_info.txt,分割符为tab键 字段依次是:产品id 产品名字 店铺类型 CREATE TABLE `user_visit_action`( `date` string, `user_id` bigint, `session_id` string, `page_id` bigint, `action_time` string, `search_keyword` string, `click_category_id` bigint, `click_product_id` bigint, `order_category_ids` string, `order_product_ids` string, `pay_category_ids` string, `pay_product_ids` string, `city_id` bigint) row format delimited fields terminated by 't'; CREATE TABLE `product_info`( `product_id` bigint, `product_name` string, `extend_info` string) row format delimited fields terminated by 't'; CREATE TABLE `city_info`( `city_id` bigint, `city_name` string, `area` string) row format delimited fields terminated by 't'; 3、分别导入数据到hive中的3张表中 4、请使用spark sql 计算各个区域前三大热门商品,并备注上每个商品在主要城市中的分布比例,超过两个城市用其他显示。 5、 某网站包含两个表,Customers 表和 Orders 表。编写一个 SQL 查询,找出所有从不订购任何东西的客户。 Customers 表: +----+-------+ | Id | Name | +----+-------+ | 1 | Joe | | 2 | Henry | | 3 | Sam | | 4 | Max | +----+-------+ Orders 表: +----+------------+ | Id | CustomerId | +----+------------+ | 1 | 3 | | 2 | 1 | +----+------------+ 例如给定上述表格,你的查询应返回: +-----------+ | Customers | +-----------+ | Henry | | Max | +-----------+ 6、 Employee 表包含所有员工信息,每个员工有其对应的 Id, salary 和 department Id。 +----+-------+--------+--------------+ | Id | Name | Salary | DepartmentId | +----+-------+--------+--------------+ | 1 | Joe | 70000 | 1 | | 2 | Henry | 80000 | 2 | | 3 | Sam | 60000 | 2 | | 4 | Max | 90000 | 1 | +----+-------+--------+--------------+ Department 表包含公司所有部门的信息。 +----+----------+ | Id | Name | +----+----------+ | 1 | IT | | 2 | Sales | +----+----------+ 编写一个 SQL 查询,找出每个部门工资最高的员工。例如,根据上述给定的表格,Max 在 IT 部门有最高工资,Henry 在 Sales 部门有最高工资。 +------------+----------+--------+ | Department | Employee | Salary | +------------+----------+--------+ | IT | Max | 90000 | | Sales | Henry | 80000 | +------------+----------+--------+ 7、 Employee 表包含所有员工信息,每个员工有其对应的 Id, salary 和 department Id 。 +----+-------+--------+--------------+ | Id | Name | Salary | DepartmentId | +----+-------+--------+--------------+ | 1 | Joe | 70000 | 1 | | 2 | Henry | 80000 | 2 | | 3 | Sam | 60000 | 2 | | 4 | Max | 90000 | 1 | | 5 | Janet | 69000 | 1 | | 6 | Randy | 85000 | 1 | +----+-------+--------+--------------+ Department 表包含公司所有部门的信息。 +----+----------+ | Id | Name | +----+----------+ | 1 | IT | | 2 | Sales | +----+----------+ 编写一个 SQL 查询,找出每个部门工资前三高的员工。例如,根据上述给定的表格,查询结果应返回: +------------+----------+--------+ | Department | Employee | Salary | +------------+----------+--------+ | IT | Max | 90000 | | IT | Randy | 85000 | | IT | Joe | 70000 | | Sales | Henry | 80000 | | Sales | Sam | 60000 | +------------+----------+--------+ 8、 编写一个 SQL 查询,来删除 Person 表中所有重复的电子邮箱,重复的邮箱里只保留 Id 最小 的那个。 +----+------------------+ | Id | Email | +----+------------------+ | 1 | john@example.com | | 2 | bob@example.com | | 3 | john@example.com | +----+------------------+ Id 是这个表的主键。 例如,在运行你的查询语句之后,上面的 Person 表应返回以下几行: +----+------------------+ | Id | Email | +----+------------------+ | 1 | john@example.com | | 2 | bob@example.com | +----+------------------+ 9、 给定一个 Weather 表,编写一个 SQL 查询,来查找与之前(昨天的)日期相比温度更高的所有日期的 Id。 +---------+------------------+------------------+ | Id(INT) | RecordDate(DATE) | Temperature(INT) | +---------+------------------+------------------+ | 1 | 2015-01-01 | 10 | | 2 | 2015-01-02 | 25 | | 3 | 2015-01-03 | 20 | | 4 | 2015-01-04 | 30 | +---------+------------------+------------------+ 例如,根据上述给定的 Weather 表格,返回如下 Id: +----+ | Id | +----+ | 2 | | 4 | +----+ 10、 这里有张 World 表 +-----------------+------------+------------+--------------+---------------+ | name | continent | area | population | gdp | +-----------------+------------+------------+--------------+---------------+ | Afghanistan | Asia | 652230 | 25500100 | 20343000 | | Albania | Europe | 28748 | 2831741 | 12960000 | | Algeria | Africa | 2381741 | 37100000 | 188681000 | | Andorra | Europe | 468 | 78115 | 3712000 | | Angola | Africa | 1246700 | 20609294 | 100990000 | +-----------------+------------+------------+--------------+---------------+ 如果一个国家的面积超过300万平方公里,或者人口超过2500万,那么这个国家就是大国家。 编写一个SQL查询,输出表中所有大国家的名称、人口和面积。 例如,根据上表,我们应该输出: +--------------+-------------+--------------+ | name | population | area | +--------------+-------------+--------------+ | Afghanistan | 25500100 | 652230 | | Algeria | 37100000 | 2381741 | +--------------+-------------+--------------+ 11、 有一个courses 表 ,有: student (学生) 和 class (课程)。 请列出所有超过或等于5名学生的课。 例如,表: +---------+------------+ | student | class | +---------+------------+ | A | Math | | B | English | | C | Math | | D | Biology | | E | Math | | F | Computer | | G | Math | | H | Math | | I | Math | +---------+------------+ 应该输出: +---------+ | class | +---------+ | Math | +---------+ Note: 学生在每个课中不应被重复计算 12、 X 市建了一个新的体育馆,每日人流量信息被记录在这三列信息中:序号 (id)、日期 (date)、 人流量 (people)。 请编写一个查询语句,找出高峰期时段,要求连续三天及以上,并且每天人流量均不少于100。 例如,表 stadium: +------+------------+-----------+ | id | date | people | +------+------------+-----------+ | 1 | 2017-01-01 | 10 | | 2 | 2017-01-02 | 109 | | 3 | 2017-01-03 | 150 | | 4 | 2017-01-04 | 99 | | 5 | 2017-01-05 | 145 | | 6 | 2017-01-06 | 1455 | | 7 | 2017-01-07 | 199 | | 8 | 2017-01-08 | 188 | +------+------------+-----------+ 对于上面的示例数据,输出为: +------+------------+-----------+ | id | date | people | +------+------------+-----------+ | 5 | 2017-01-05 | 145 | | 6 | 2017-01-06 | 1455 | | 7 | 2017-01-07 | 199 | | 8 | 2017-01-08 | 188 | +------+------------+-----------+ Note: 每天只有一行记录,日期随着 id 的增加而增加。 13、 某城市开了一家新的电影院,吸引了很多人过来看电影。该电影院特别注意用户体验,专门有个 LED显示板做电影推荐,上面公布着影评和相关电影描述。 作为该电影院的信息部主管,您需要编写一个 SQL查询,找出所有影片描述为非 boring (不无聊) 的并且 id 为奇数 的影片,结果请按等级 rating 排列。 例如,下表 cinema: +---------+-----------+--------------+-----------+ | id | movie | description | rating | +---------+-----------+--------------+-----------+ | 1 | War | great 3D | 8.9 | | 2 | Science | fiction | 8.5 | | 3 | irish | boring | 6.2 | | 4 | Ice song | Fantacy | 8.6 | | 5 | House card| Interesting| 9.1 | +---------+-----------+--------------+-----------+ 对于上面的例子,则正确的输出是为: +---------+-----------+--------------+-----------+ | id | movie | description | rating | +---------+-----------+--------------+-----------+ | 5 | House card| Interesting| 9.1 | | 1 | War | great 3D | 8.9 | +---------+-----------+--------------+-----------+ 14、 小美是一所中学的信息科技老师,她有一张 seat 座位表,平时用来储存学生名字和与他们相对应的座位 id。 其中纵列的 id 是连续递增的 小美想改变相邻俩学生的座位。 你能不能帮她写一个 SQL query 来输出小美想要的结果呢? 示例: +---------+---------+ | id | student | +---------+---------+ | 1 | Abbot | | 2 | Doris | | 3 | Emerson | | 4 | Green | | 5 | Jeames | +---------+---------+ 假如数据输入的是上表,则输出结果如下: +---------+---------+ | id | student | +---------+---------+ | 1 | Doris | | 2 | Abbot | | 3 | Green | | 4 | Emerson | | 5 | Jeames | +---------+---------+ 注意: 如果学生人数是奇数,则不需要改变最后一个同学的座位。 15、 给定一个 salary表,如下所示,有m=男性 和 f=女性的值 。交换所有的 f 和 m 值(例如,将所有 f 值更改为 m,反之亦然)。要求使用一个更新查询,并且没有中间临时表。 例如: | id | name | sex | salary | |----|------|-----|--------| | 1 | A | m | 2500 | | 2 | B | f | 1500 | | 3 | C | m | 5500 | | 4 | D | f | 500 | 运行你所编写的查询语句之后,将会得到以下表: | id | name | sex | salary | |----|------|-----|--------| | 1 | A | f | 2500 | | 2 | B | m | 1500 | | 3 | C | f | 5500 | | 4 | D | m | 500 |
资源过多,放在百度云里了,如果失效请私信我! 链接: https://pan.baidu.com/s/1IFfGZx-ARKjHfZ65tsvLFg 提取码: 1234 复制这段内容后打开百度网盘手机App,操作更方便哦
第1题:
object HomeWork20200413_1 { case class student_info(userID:String,userName:String,sex:String,classID:String,date:String) case class department_info(departmentID:String,departmentName:String) case class class_info(classID:String,className:String,date:String,departmentName:String) case class student_scores(userID:String,username:String,sex:String,classID:String,score:String) def main(args: Array[String]): Unit = { val spark: SparkSession = SparkSession.builder() .master("local[*]") .appName("HomeWork20200413_1") .config(new SparkConf()) .getOrCreate() import spark.implicits._ /** * 第一题 */ /** * 方式1:指定列名添加Schema */ val rdd1: RDD[String] = spark.sparkContext.textFile("input20200413/student_info.txt") val rdd2: RDD[String] = spark.sparkContext.textFile("input20200413/department_info.txt") val rdd3: RDD[String] = spark.sparkContext.textFile("input20200413/class_info.txt") val rdd4: RDD[String] = spark.sparkContext.textFile("input20200413/student_scores.txt") rdd1.map{x => var datas = x.split(",");(datas(0),datas(1),datas(2),datas(3),datas(4))}.toDF("userID","userName","sex","classID","date").show() rdd2.map{x => var datas = x.split(",");(datas(0),datas(1))}.toDF("departmentID","departmentName").show() rdd3.map{x => var datas = x.split(",");(datas(0),datas(1),datas(2),datas(3))}.toDF("classID","className","date","departmentName").show() rdd4.map{x => var datas = x.split(",");(datas(0),datas(1),datas(2),datas(3),datas(4))}.toDF("userID","username","sex","classID","score").show() /** * 方式2:通过StructType指定Schema */ val rdd11: RDD[String] = spark.sparkContext.textFile("input20200413/student_info.txt") val rdd22: RDD[String] = spark.sparkContext.textFile("input20200413/department_info.txt") val rdd33: RDD[String] = spark.sparkContext.textFile("input20200413/class_info.txt") val rdd44: RDD[String] = spark.sparkContext.textFile("input20200413/student_scores.txt") val rowRDD1: RDD[Row] = rdd11.map(_.split(",")).map(x => Row(x(0),x(1),x(2),x(3),x(4))) val rowRDD2: RDD[Row] = rdd22.map(_.split(",")).map(x => Row(x(0),x(1))) val rowRDD3: RDD[Row] = rdd33.map(_.split(",")).map(x => Row(x(0),x(1),x(2),x(3))) val rowRDD4: RDD[Row] = rdd44.map(_.split(",")).map(x => Row(x(0),x(1),x(2),x(3),x(4))) val structType1:StructType = StructType(Seq( StructField("userID", StringType), StructField("userName", StringType), StructField("sex", StringType), StructField("classID", StringType), StructField("date", StringType) )) val structType2:StructType = StructType(Array( StructField("departmentID",StringType), StructField("departmentName",StringType) )) val structType3:StructType = StructType(Array( StructField("classID",StringType), StructField("className",StringType), StructField("date",StringType), StructField("departmentName",StringType) )) val structType4:StructType = StructType(Array( StructField("userID",StringType), StructField("username",StringType), StructField("sex",StringType), StructField("classID",StringType), StructField("score",StringType) )) spark.createDataFrame(rowRDD1,structType1).show() spark.createDataFrame(rowRDD2,structType2).show() spark.createDataFrame(rowRDD3,structType3).show() spark.createDataFrame(rowRDD4,structType4).show() /** * 方式3:编写样例类,利用反射机制推断Schema */ val rdd111: RDD[String] = spark.sparkContext.textFile("input20200413/student_info.txt") val rdd222: RDD[String] = spark.sparkContext.textFile("input20200413/department_info.txt") val rdd333: RDD[String] = spark.sparkContext.textFile("input20200413/class_info.txt") val rdd444: RDD[String] = spark.sparkContext.textFile("input20200413/student_scores.txt") val caseRDD1: RDD[student_info] = rdd111.map(_.split(",")).map(x => student_info(x(0),x(1),x(2),x(3),x(4))) val caseRDD2: RDD[department_info] = rdd222.map(_.split(",")).map(x => department_info(x(0),x(1))) val caseRDD3: RDD[class_info] = rdd333.map(_.split(",")).map(x => class_info(x(0),x(1),x(2),x(3))) val caseRDD4: RDD[student_scores] = rdd444.map(_.split(",")).map(x => student_scores(x(0),x(1),x(2),x(3),x(4))) caseRDD1.toDF().show() caseRDD2.toDF().show() caseRDD3.toDF().show() caseRDD4.toDF().show() spark.stop() } }
第2-4题:
object HomeWork20200413_2 { def main(args: Array[String]): Unit = { val spark: SparkSession = SparkSession.builder() .master("local[*]") .appName("HomeWork20200413_2") .config(new SparkConf()) .enableHiveSupport() .getOrCreate() /** * 第2-4题 */ spark.udf.register("remark",new Remark()) spark.sql( """ |select area,product_id,product_count,remark from ( |select remark(city_name) remark,ci.area,pi.product_id,count(pi.product_id) product_count,row_number() over (partition by ci.area order by count(pi.product_id) desc) rk |from homework_20200413.city_info ci | left join homework_20200413.user_visit_action uva | on ci.city_id = uva.city_id | left join homework_20200413.product_info pi | on uva.click_product_id = pi.product_id |group by ci.area,pi.product_id |order by ci.area,product_count desc) tmpA |where tmpA.rk <= 3 |""".stripMargin).show() spark.stop() } class Remark extends UserDefinedAggregateFunction { override def inputSchema: StructType = StructType(StructField("city_name",StringType)::Nil) override def bufferSchema: StructType = StructType(StructField("buffer",MapType(StringType,LongType))::StructField("count",LongType)::Nil) override def dataType: DataType = StringType override def deterministic: Boolean = true override def initialize(buffer: MutableAggregationBuffer): Unit = { buffer(0) = Map[String,Long]() buffer(1) = 0L } override def update(buffer: MutableAggregationBuffer, input: Row): Unit = { if(!input.isNullAt(0)){ val city_name: String = input.getString(0) val temp_map: collection.Map[String, Long] = buffer.getMap[String,Long](0) buffer(0) = temp_map + (city_name->(temp_map.getOrElse(city_name,0L)+1L)) buffer(1) = buffer.getLong(1) + 1L } } override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { val temp_map1: collection.Map[String, Long] = buffer1.getMap[String,Long](0) val temp_map2: collection.Map[String, Long] = buffer2.getMap[String,Long](0) val count1: Long = buffer1.getLong(1) val count2: Long = buffer2.getLong(1) buffer1(0) = temp_map1.foldLeft(temp_map2){ case (map,(k,v))=>map + ( k ->(map.getOrElse(k,1L)+v)) } buffer1(1) = count1+count2 } override def evaluate(buffer: Row): Any = { val count: Long = buffer.getLong(1) val format = new DecimalFormat(".00%") val tuples: List[(String, Long)] = buffer.getMap[String, Long](0).toList.sortBy(-_._2).take(2) println(tuples) val countTop2: Long = tuples.foldLeft(0L)((x, y) => x + y._2) tuples.map { case (k, v) => { k + ":" + format.format(v.toDouble/count) } }.mkString(", ") + ", 其他" +":"+ format.format((count-countTop2).toDouble / count) } } }
第5-15题:
object HomeWork20200413_3 { def main(args: Array[String]): Unit = { val spark: SparkSession = SparkSession.builder() .master("local[*]") .appName("HomeWork20200413_2") .config(new SparkConf().set("spark.sql.crossJoin.enabled","true")) .enableHiveSupport() .getOrCreate() /** * 第五题 */ spark.sql( """ |SELECT NAME FROM |( |SELECT o.id,NAME FROM homework_20200413.customers c LEFT JOIN homework_20200413.orders o |ON c.id = o.id AND o.id IS NOT NULL |) tmp |WHERE id IS NULL |""".stripMargin).show() /** * 第六题 */ spark.sql( """ |select dname, ename, salary from |( |SELECT d.name dname,e.name ename,salary,row_number() over(PARTITION BY d.id ORDER BY salary desc) rk |FROM homework_20200413.employee e JOIN homework_20200413.department d ON e.departmentid = d.id |) tmp |where rk = 1 |""".stripMargin).show() /** * 第七题 */ spark.sql( """ |select dname, ename, salary from |( |SELECT d.name dname,e.name ename,salary,row_number() over(PARTITION BY d.id ORDER BY salary desc) rk |FROM homework_20200413.employee e JOIN homework_20200413.department d ON e.departmentid = d.id |) tmp |where rk <= 3 |""".stripMargin).show() /** * 第八题 */ spark.sql( """ |select id,email from |( |select id,email,row_number() over(partition by email order by id) rk from homework_20200413.person |) tmp |where rk = 1 |order by id,email |""".stripMargin).show() /** * 第九题 */ spark.sql( """ |select id from |( |select id,temperature-last_temperature newtemperature from |( |select id,recorddate,temperature,lag(temperature,1,50) over(order by recorddate) last_temperature from homework_20200413.weather |) tmp |) tmp2 |where newtemperature > 0 |""".stripMargin).show() /** * 第十题 */ spark.sql( """ |select * from homework_20200413.world where area > 3000000 or population > 25000000 |""".stripMargin).show() /** * 第十一题 */ spark.sql( """ |select class from homework_20200413.courses group by class having count(*) > 5 |""".stripMargin).show() /** * 第十二题 */ spark.sql( """ |select id,date,people from |( |select id,date,people,count(*) over(partition by sub_date) counts from |( |select id,date,people,date_sub(date,rk) sub_date from |( |select id,date,people,row_number() over(order by date) rk from homework_20200413.stadium where people >= 100) t1 |)t2 |)t3 |where counts >= 3 order by date |""".stripMargin).show() /** * 第十三题 */ spark.sql( """ |select * from homework_20200413.cinema where description != "boring" and id % 2 == 1 order by rating desc |""".stripMargin).show() /** * 第十四题 */ spark.sql( """ |select (case when id%2=0 then id-1 when id%2!=0 and id=counts then id else id+1 end) as id, |student from |homework_20200413.students join |(select count(*) as counts from homework_20200413.students) tmp |order by id,student |""".stripMargin).show() /** * 第十五题 */ //MySQL版本 -》 UPDATE salary SET sex = IF(sex='m','f','m') //Hive版本,hive默认不支持update和delete操作,所以就不适用update,通过select效果一样 spark.sql( """ |select id,name,if(sex="m","f","m"),salary from homework_20200413.salary |""".stripMargin).show() spark.stop() } }
本网页所有视频内容由 imoviebox边看边下-网页视频下载, iurlBox网页地址收藏管理器 下载并得到。
ImovieBox网页视频下载器 下载地址: ImovieBox网页视频下载器-最新版本下载
本文章由: imapbox邮箱云存储,邮箱网盘,ImageBox 图片批量下载器,网页图片批量下载专家,网页图片批量下载器,获取到文章图片,imoviebox网页视频批量下载器,下载视频内容,为您提供.
阅读和此文章类似的: 全球云计算